Stockfish Development Versions are build automatically if there are changes on the master branch in the git repository (https://github.com/official-stockfish/Stockfish). Use it at your own risk.
They are compiled with gcc 11.2/mingw 10 on Ubuntu 22.04.

Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Stéphane Nicolet
Date: Sat Jul 1 13:01:28 2023 +0200
Timestamp: 1688209288

Document the LEB128 patch

Add some comments and harmonize style for the LEB128 patch.

closes https://github.com/official-stockfish/Stockfish/pull/4642

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Daniel Monroe
Date: Sat Jul 1 12:59:28 2023 +0200
Timestamp: 1688209168

Update default net to nn-a3d1bfca1672.nnue

faster permutation of master net weights

Activation data taken from https://drive.google.com/drive/folders/1Ec9YuuRx4N03GPnVPoQOW70eucOKngQe?usp=sharing
Permutation found using https://github.com/Ergodice/nnue-pytorch/blob/836387a0e5e690431d404158c46648710f13904d/ftperm.py
See also https://github.com/glinscott/nnue-pytorch/pull/254

The algorithm greedily selects 2- and 3-cycles that can be permuted to increase the number of runs of zeroes. The percent of zero runs from the master net increased from 68.46 to 70.11 from 2-cycles and only increased to 70.32 when considering 3-cycles. Interestingly, allowing both halves of L1 to intermix when creating zero runs can give another 0.5% zero-run density increase with this method.

Measured speedup:

```
CPU: 16 x AMD Ryzen 9 3950X 16-Core Processor
Result of 50 runs

base (./stockfish.master ) = 1561556 +/- 5439
test (./stockfish.patch ) = 1575788 +/- 5427
diff = +14231 +/- 2636

speedup = +0.0091
P(speedup > 0) = 1.0000
```

closes https://github.com/official-stockfish/Stockfish/pull/4640

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Joost VandeVondele
Date: Sat Jul 1 12:52:31 2023 +0200
Timestamp: 1688208751

Restore development

closes https://github.com/official-stockfish/Stockfish/pull/4651

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Joost VandeVondele
Date: Thu Jun 29 08:00:10 2023 +0200
Timestamp: 1688018410

Stockfish 16

Official release version of Stockfish 16

Bench: 2593605

---

Stockfish 16

A new major release of Stockfish is now available at

https://stockfishchess.org/download/

*Quality of chess play*

Stockfish continues to demonstrate its ability to discover superior moves
with remarkable speed. In self-play against Stockfish 15, this new
release gains up to 50 Elo[1] and wins up to 12 times more game pairs[2]
than it loses. In major chess engine tournaments, Stockfish reliably tops
the rankings[3] winning the TCEC season 24 Superfinal, Swiss, Fischer
Random, and Double Random Chess tournaments and the CCC 19 Bullet,
20 Blitz, and 20 Rapid competitions. Leela Chess Zero[4] was the
challenger in most finals, putting top-engine chess now firmly in the
hands of teams embracing free and open-source software.

*Progress made*

This updated version of Stockfish introduces several enhancements,
including an upgraded neural net architecture (SFNNv6)[5], improved
implementation, and refined parameterization. The ongoing utilization
of Leela’s data combined with a novel inference approach exploiting
sparsity[6], and network compression[7] ensure a speedy evaluation and
modest binary sizes while allowing for more weights and higher accuracy.
The search has undergone more optimization, leading to improved
performance, particularly in longer analyses[8]. Additionally,
the Fishtest framework has been improved and is now able to run the
tests needed to validate new ideas with 10000s of CPU cores.

*Usability improvements*

Stockfish now comes with documentation, found in the wiki folder when
downloading it or on GitHub[9]. Additionally, Stockfish now includes
a clear and consistent forced tablebase win score, displaying a value
of 200 minus the number of plies required to reach a tablebase win[10].
Furthermore, the UCI_Elo option, to reduce its strength, has been
calibrated[11]. It is worth noting that the evaluation system remains
consistent with Stockfish 15.1[12], maintaining the choice that 100cp
means a 50% chance of winning the game against an equal opponent[13].
Finally, binaries of our latest development version are now provided
continuously as pre-releases on GitHub making it easier for
enthusiasts to download the latest and strongest version of
the program[14], we thank Roman Korba for having provided a similar
service for a long time.

*Thank you*

The success of the Stockfish project relies on the vibrant community
of passionate enthusiasts (we appreciate each and every one of you!)
who generously contribute their knowledge, time, and resources.
Together, this dedicated community works towards the common goal of
developing a powerful, freely accessible, and open-source chess engine.
We invite all chess enthusiasts to join the Fishtest testing framework
and contribute to the project[15].

The Stockfish team

[1] https://tests.stockfishchess.org/tests/view/649409f0dc7002ce609c99cc
[2] https://tests.stockfishchess.org/tests/view/649409d7dc7002ce609c99c6
[3] https://en.wikipedia.org/wiki/Stockfish_(chess)#Competition_results
[4] https://lczero.org/
[5] https://github.com/official-stockfish/Stockfish/commit/c1fff71
[6] https://github.com/official-stockfish/Stockfish/commit/38e6166
[7] https://github.com/official-stockfish/Stockfish/commit/a46087e
[8] https://github.com/official-stockfish/Stockfish/commit/472e726
[9] https://github.com/official-stockfish/Stockfish/wiki/
[10] https://github.com/official-stockfish/Stockfish/commit/def2966
[11] https://github.com/official-stockfish/Stockfish/commit/a08b8d4
[12] https://github.com/official-stockfish/Stockfish/commit/52e84e4
[13] https://github.com/official-stockfish/Stockfish/wiki/Stockfish-FAQ#interpretation-of-the-stockfish-evaluation
[14] https://github.com/official-stockfish/Stockfish/releases?q=prerelease%3Atrue
[15] https://stockfishchess.org/get-involved/
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Linmiao Xu
Date: Thu Jun 22 10:33:19 2023 +0200
Timestamp: 1687422799

Update default net to nn-5af11540bbfe.nnue

Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
https://github.com/official-stockfish/Stockfish/pull/4620

LEB128 compression done with the new serialize.py param in:
https://github.com/glinscott/nnue-pytorch/pull/251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
--experiment-name L1-1536-sparse-master-retrain \
--training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
--early-fen-skipping 27 \
--start-from-engine-test-net True \
--max_epoch 960 \
--lr 4.375e-4 \
--gamma 0.995 \
--start-lambda 1.0 \
--end-lambda 0.7 \
--tui False \
--seed $RANDOM \
--gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
leela96-filt-v2.min.binpack \
dfrc99-16tb7p-eval-filt-v2.min.binpack \
filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
/data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869 Elo +1.70
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927 Elo +2.11
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes https://github.com/official-stockfish/Stockfish/pull/4635

bench 2593605
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: peregrineshahin
Date: Thu Jun 22 10:26:17 2023 +0200
Timestamp: 1687422377

Fix Potential in TB cutoffs for NMP.

Removes the second dependency on beta and caps the return value to VALUE_TB_WIN_IN_MAX_PLY - 1

Earlier tests:

STC:
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 193632 W: 51372 L: 51326 D: 90934 Elo +0.08
Ptnml(0-2): 447, 20111, 55687, 20091, 480
https://tests.stockfishchess.org/tests/view/6486ee4465ffe077ca125bc1

LTC:
LLR: 2.97 (-2.94,2.94) <-1.75,0.25>
Total: 331758 W: 89538 L: 89624 D: 152596 Elo -0.09
Ptnml(0-2): 114, 30121, 105516, 29993, 135
https://tests.stockfishchess.org/tests/view/6489401af42a44347ed7be42

updated constant:
LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 100260 W: 27143 L: 27017 D: 46100 Elo +0.44
Ptnml(0-2): 34, 8842, 32248, 8976, 30
https://tests.stockfishchess.org/tests/view/6492fcafdc7002ce609c818c

closes: https://github.com/official-stockfish/Stockfish/pull/4632
fixes: https://github.com/official-stockfish/Stockfish/issues/4598

bench: 2370027
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Joost VandeVondele
Date: Thu Jun 22 10:17:44 2023 +0200
Timestamp: 1687421864

Update winrate model with June data

Retained 748191776 scored positions for analysis

const int NormalizeToPawnValue = 328;
Corresponding spread = 60;
Corresponding normalized spread = 0.18337766691628035;
Draw rate at 0.0 eval at move 32 = 0.9914715947898592;

closes https://github.com/official-stockfish/Stockfish/pull/4636

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Joost VandeVondele
Date: Thu Jun 22 10:15:51 2023 +0200
Timestamp: 1687421751

Update top CPU contributors

closes https://github.com/official-stockfish/Stockfish/pull/4629

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: disservin
Date: Tue Jun 20 18:50:12 2023 +0200
Timestamp: 1687279812

Fix failing CI of pull requests

adds a guard to prevent pull requests from trying to delete the previous pre-release

closing https://github.com/official-stockfish/Stockfish/pull/4631

No functional change.
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Joerg Oster
Date: Tue Jun 20 10:47:07 2023 +0200
Timestamp: 1687250827

Fix indentation in qsearch.

https://github.com/official-stockfish/Stockfish/pull/4630

No functional change.
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: disservin
Date: Tue Jun 20 08:55:54 2023 +0200
Timestamp: 1687244154

create prereleases upon push to master

using github actions, create a prerelease for the latest commit to master.
As such a development version will be available on github, in addition to the latest release.

closes https://github.com/official-stockfish/Stockfish/pull/4622

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: maxim
Date: Mon Jun 19 21:37:23 2023 +0200
Timestamp: 1687203443

Compressed network parameters

Implemented LEB128 (de)compression for the feature transformer.
Reduces embedded network size from 70 MiB to 39 Mib.

The new nn-78bacfcee510.nnue corresponds to the master net compressed.

closes https://github.com/official-stockfish/Stockfish/pull/4617

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: cj5716
Date: Fri Jun 16 19:14:58 2023 +0200
Timestamp: 1686935698

Small cleanup

This non-functional change keeps formatting consistent.

closes https://github.com/official-stockfish/Stockfish/pull/4623

Bench 2370027
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: AndrovT
Date: Wed Jun 14 18:36:39 2023 +0200
Timestamp: 1686760599

Permute master net weights to increase sparsity

Activation data collection using https://github.com/AndrovT/Stockfish/commit/ac468039ab544b03ad9a22c859a4217729c10a77 run as

bench 16 1 13 varied_1000.epd depth NNUE log.bin

on FENs from https://gist.github.com/AndrovT/7eae6918eb50764227e2bafe7938953c.

Permutation found using https://gist.github.com/AndrovT/359c831b7223c637e9156b01eb96949e.
Uses a greedy algorithm that goes sequentially through the output positions and
chooses a neuron for that position such that the number of nonzero quartets is the smallest.

Net weights permuted using https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

Benchmark:

Result of 100 runs of 'bench 16 1 13 default depth NNUE'
========================================================
base (...kfish-master) = 885869 +/- 7395
test (./stockfish ) = 895885 +/- 7368
diff = +10016 +/- 2984

speedup = +0.0113
P(speedup > 0) = 1.0000

Passed STC:
https://tests.stockfishchess.org/tests/view/648866c4713491385c804728
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 126784 W: 34003 L: 33586 D: 59195 Elo +1.14
Ptnml(0-2): 283, 13001, 36437, 13358, 313

closes https://github.com/official-stockfish/Stockfish/pull/4620

No functional change.
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: peregrineshahin
Date: Wed Jun 14 18:34:57 2023 +0200
Timestamp: 1686760497

Consistent bench extraction with fishtest.

Consistent with recent fishtest commit https://github.com/glinscott/fishtest/commit/c0d174396f7fb1c0b3243aaa6cc73769079f3ff9

closes https://github.com/official-stockfish/Stockfish/pull/4619

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Viren6
Date: Wed Jun 14 18:33:56 2023 +0200
Timestamp: 1686760436

Remove setting of static to none if in check in qsearch

Small simplification

Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/6487924d713491385c8034ae
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 59616 W: 15885 L: 15703 D: 28028 Elo +1.06
Ptnml(0-2): 144, 6130, 17086, 6296, 152

closes https://github.com/official-stockfish/Stockfish/pull/4618

No functional change.
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Andreas Matthies
Date: Tue Jun 13 08:45:25 2023 +0200
Timestamp: 1686638725

Fix for MSVC compilation.

MSVC needs two more explicit casts to compile new affine_transform_sparse_input.
See https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_ps
and https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps

closes https://github.com/official-stockfish/Stockfish/pull/4616

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Stéphane Nicolet
Date: Tue Jun 13 08:42:55 2023 +0200
Timestamp: 1686638575

Clean-up code indentation in qsearch

closes https://github.com/official-stockfish/Stockfish/pull/4615

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Michael Chaly
Date: Mon Jun 12 21:17:31 2023 +0200
Timestamp: 1686597451

Improve comments

Fix comments for IIR, also document non-linear scaling in extensions.
Also add explicitly the bench, to fix an issue after the last commit.

closes https://github.com/official-stockfish/Stockfish/pull/4614

bench 2370027
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: AndrovT
Date: Mon Jun 12 20:41:27 2023 +0200
Timestamp: 1686595287

Use block sparse input for the first layer.

Use block sparse input for the first fully connected layer on architectures with at least SSSE3.

Depending on the CPU architecture, this yields a speedup of up to 10%, e.g.

```
Result of 100 runs of 'bench 16 1 13 default depth NNUE'

base (...ockfish-base) = 959345 +/- 7477
test (...ckfish-patch) = 1054340 +/- 9640
diff = +94995 +/- 3999

speedup = +0.0990
P(speedup > 0) = 1.0000

CPU: 8 x AMD Ryzen 7 5700U with Radeon Graphics
Hyperthreading: on
```

Passed STC:
https://tests.stockfishchess.org/tests/view/6485aa0965ffe077ca12409c
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 8864 W: 2479 L: 2223 D: 4162 Elo +10.04
Ptnml(0-2): 13, 829, 2504, 1061, 25

This commit includes a net with reordered weights, to increase the likelihood of block sparse inputs,
but otherwise equivalent to the previous master net (nn-ea57bea57e32.nnue).

Activation data collected with https://github.com/AndrovT/Stockfish/tree/log-activations, running bench 16 1 13 varied_1000.epd depth NNUE on this data. Net parameters permuted with https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

closes https://github.com/official-stockfish/Stockfish/pull/4612

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Joost VandeVondele
Date: Mon Jun 12 20:35:44 2023 +0200
Timestamp: 1686594944

Add network export to CI

verify the network written by export_net matches the original

closes https://github.com/official-stockfish/Stockfish/pull/4613

No functional change
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Linmiao Xu
Date: Sun Jun 11 15:23:52 2023 +0200
Timestamp: 1686489832

Update default net to nn-ea57bea57e32.nnue

Created by retraining an earlier epoch (ep659) of the experiment that led to the first SFNNv6 net:
- First retrained on the nn-0dd1cebea573 dataset
- Then retrained with skip 20 on a smaller dataset containing unfiltered Leela data
- And then retrained again with skip 27 on the nn-0dd1cebea573 dataset

The equivalent 7-step training sequence from scratch that led here was:

1. max-epoch 400, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
ep379 chosen for retraining in step2

2. max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
ep679 chosen for retraining in step3

3. max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
ep799 chosen for retraining in step4

4. max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
ep759 became nn-8d69132723e2.nnue (first SFNNv6 net)
ep659 chosen for retraining in step5

5. max-epoch 800, end-lambda 0.7, skip 28, nn-0dd1cebea573 dataset
ep759 chosen for retraining in step6

6. max-epoch 800, end-lambda 0.7, skip 20, leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack
ep639 chosen for retraining in step7

7. max-epoch 800, end-lambda 0.7, skip 27, nn-0dd1cebea573 dataset
ep619 became nn-ea57bea57e32.nnue

For the last retraining (step7):

python3 easy_train.py
--experiment-name L1-1536-Re6-masterShuffled-ep639-sk27-Re5-leela-dfrc-v2-T77toT80small-Re4-masterShuffled-ep659-Re3-sameAs-Re2-leela96-dfrc99-16t-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-Re1-LeelaFarseer-new-T77T79 \
--training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
--nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
--early-fen-skipping 27 \
--start-lambda 1.0 \
--end-lambda 0.7 \
--max_epoch 800 \
--start-from-engine-test-net False \
--start-from-model /data/L1-1536-Re5-leela-dfrc-v2-T77toT80small-epoch639.nnue \
--lr 4.375e-4 \
--gamma 0.995 \
--tui False \
--seed $RANDOM \
--gpus "0,"

For preparing the step6 leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack dataset:

python3 interleave_binpacks.py \
leela96-filt-v2.binpack \
dfrc99-16tb7p-eval-filt-v2.binpack \
test77-dec2021-16tb7p.no-db.min-mar2023.binpack \
test78-janfeb2022-16tb7p.no-db.min-mar2023.binpack \
test79-apr2022-16tb7p-filter-v6-dd.binpack \
test80-apr2022-16tb7p.no-db.min-mar2023.binpack \
/data/leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack

The unfiltered Leela data used for the step6 dataset can be found at:
https://robotmoon.com/nnue-training-data

Local elo at 25k nodes per move:
nn-epoch619.nnue : 2.3 +/- 1.9

Passed STC:
https://tests.stockfishchess.org/tests/view/6480d43c6e6ce8d9fc6d7cc8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 40992 W: 11017 L: 10706 D: 19269 Elo +2.64
Ptnml(0-2): 113, 4400, 11170, 4689, 124

Passed LTC:
https://tests.stockfishchess.org/tests/view/648119ac6e6ce8d9fc6d8208
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 129174 W: 35059 L: 34579 D: 59536 Elo +1.29
Ptnml(0-2): 66, 12548, 38868, 13050, 55

closes https://github.com/official-stockfish/Stockfish/pull/4611

bench: 2370027
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Guenther Demetz
Date: Sun Jun 11 15:13:57 2023 +0200
Timestamp: 1686489237

Reintroduce SEE verification against discovered attacks

Reintroduces https://github.com/official-stockfish/Stockfish/pull/4453
along with https://github.com/official-stockfish/Stockfish/pull/4469

Leaving out
https://github.com/official-stockfish/Stockfish/pull/4533
https://github.com/official-stockfish/Stockfish/pull/4572

Passed STC:
https://tests.stockfishchess.org/tests/view/647d8c37726f6b400e408a0a
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 143168 W: 38346 L: 37892 D: 66930 Elo +1.10
Ptnml(0-2): 352, 15672, 39164, 15962, 434

Passed LTC:
https://tests.stockfishchess.org/tests/view/647ee8c528c4431bcb58e432
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 71538 W: 19560 L: 19190 D: 32788 Elo +1.80
Ptnml(0-2): 49, 6905, 21499, 7259, 57

closes https://github.com/official-stockfish/Stockfish/pull/4609

bench: 2595430
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: cj5716
Date: Sun Jun 11 15:05:54 2023 +0200
Timestamp: 1686488754

Simplify multiplier for improvement

This simplifies a `* 99 / 1300` term into just `/ 13`.

Passed non-regression STC:
LLR: 2.92 (-2.94,2.94) <-1.75,0.25>
Total: 58816 W: 15727 L: 15540 D: 27549 Elo +1.10
Ptnml(0-2): 149, 6370, 16203, 6517, 169
https://tests.stockfishchess.org/tests/view/647d25e4726f6b400e408165

Passed non-regression LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 154386 W: 41749 L: 41669 D: 70968 Elo +0.18
Ptnml(0-2): 94, 14992, 46956, 15042, 109
https://tests.stockfishchess.org/tests/view/647d9b3c726f6b400e408b2a

closes https://github.com/official-stockfish/Stockfish/pull/4608

Bench: 2511327
see source
Windows x64 for Haswell CPUs
Windows x64 for modern computers + AVX2
Windows x64 for modern computers
Windows x64 + SSSE3
Windows x64
Linux x64 for Haswell CPUs
Linux x64 for modern computers + AVX2
Linux x64 for modern computers
Linux x64 + SSSE3
Linux x64
Author: Linmiao Xu
Date: Tue Jun 6 21:21:56 2023 +0200
Timestamp: 1686079316

Remove optimism multiplier in nnue eval calculation

The same formula had passed SPRT against an earlier version of master.

Passed non-regression STC vs. d99942f:
https://tests.stockfishchess.org/tests/view/6478e76654dd118e1d98f72e
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 118720 W: 31402 L: 31277 D: 56041 Elo +0.37
Ptnml(0-2): 301, 13148, 32344, 13259, 308

Passed non-regression LTC vs. d99942f:
https://tests.stockfishchess.org/tests/view/647a22c154dd118e1d991146
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 74286 W: 20019 L: 19863 D: 34404 Elo +0.73
Ptnml(0-2): 31, 7189, 22540, 7359, 24

The earlier patch had conflicted with a faster SPRT passer, so this
was tested again after rebasing on latest master.

Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/647d6e46726f6b400e408790
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 166176 W: 44309 L: 44234 D: 77633 Elo +0.16
Ptnml(0-2): 461, 18252, 45557, 18387, 431

Passed non-regression LTC:
https://tests.stockfishchess.org/tests/view/647eb00ba268d1bc11255e7b
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 28170 W: 7713 L: 7513 D: 12944 Elo +2.47
Ptnml(0-2): 14, 2609, 8635, 2817, 10

closes https://github.com/official-stockfish/Stockfish/pull/4607

bench 2503095
see source

< prev page next page >